Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nagarajan Vembu, ${ }^{\text {a }}$ Maruthai
 Nallu, ${ }^{\text {a* }}$ Elinor C. Spencer ${ }^{\text {b }}$ and Judith A. K. Howard ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\text {b }}$ Department of Chemistry, Durham University, Durham DH1 3LE, England

Correspondence e-mail:
mnalv2003@yahoo.com

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.060$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Phenyl 3-nitrobenzenesulfonate

In the title molecule, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{5} \mathrm{~S}$, there are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions which generate rings of motifs $S(5), S(6), R_{1}^{2}(4)$, $R_{2}^{1}(5), R_{2}^{2}(7)$ and $R_{2}^{2}(13)$. The supramolecular aggregation is completed by the presence of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields. An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitrobenzenesulfonyl chloride (Vembu, Nallu, Spencer \& Howard, 2003c).

(I)

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters in Table 1. The dihedral angle between the mean planes of the 3-nitrobenzene and phenyl rings is $38.76(8)^{\circ}$. This non-coplanar orientation is similar to that found in some other aromatic sulfonates (Vembu, Nallu, Garrison \& Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer \& Howard, 2003a,b), and is in contrast to the near coplanar orientation found in the 2,4-dinitrophenyl (Vembu, Nallu, Garrison \& Youngs, 2003a) and 4-methoxyphenyl (Vembu, Nallu, Garrison, Hindi \& Youngs, 2003) derivatives.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids.

Received 14 July 2003
Accepted 21 July 2003
Online 31 July 2003

Figure 2
Diagram showing hydrogen bonds $1-5$ (the numbers relate to the sequence of entries in Table 2).

Figure 3
Diagram showing hydrogen bonds 6-14 (the numbers relate to the sequence of entries in Table 2). Symmetry codes are as in Table 2.

The crystal structure of (I) is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). The range of $\mathrm{H} \cdots \mathrm{O}$ distances found in (I) agrees with that found for weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (Desiraju \& Steiner, 1999). As shown in Fig. 2, each of the $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1, \quad \mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 4, \quad \mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$ and $\mathrm{C} 6-$ H6 . .O3 interactions generates rings of graph-set motif $S(5)$ (Etter, 1990; Bernstein et al., 1995). The C6-H6‧.O2 and C6-H6 . O3 interactions together constitute a pair of bifurcated donor bonds. The $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4$ interaction generates an $S(6)$ motif. The $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4$ and $\mathrm{C} 4-$ $\mathrm{H} 4 \cdots \mathrm{O} 4$ interactions together constitute a pair of bifurcated

Figure 4
The packing of molecules, viewed along the c axis, showing the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.
acceptor bonds. The $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 5^{\mathrm{i}}$ interactions constitute a pair of bifurcated donor bonds, generating a symmetrical three-centre hydrogen-bonded chelate motif (Fig. 3) of graph-set $R_{1}^{2}(4)$ (symmetry codes are as in Table 2). The $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{i}}$ interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graphset $R_{2}^{1}(5)$. The $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 5^{\mathrm{i}}$ and $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\mathrm{i}}$ interactions together generate an $R_{2}^{2}(7)$ motif, which consists of $R_{1}^{2}(4)$ and $R_{2}^{1}(5)$ motifs. The $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{ii}}$ interactions together form a sulfonyl bifurcated motif of graph-set $R_{2}^{2}(13)$. There are several other $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions which contribute to the supramolecular aggregation of this structure. The supramolecular aggregation is completed by the presence of two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Fig. 4 and Table 2; Spek, 1998).

Experimental

3-Nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (4 ml) was added to phenol (5 mmol) in NaOH solution ($2.5 \mathrm{ml}, 8 \%$) with constant shaking. The precipitated title compound, (I) (3.9 mmol , yield 78%), was filtered off and recrystallized from ethanol.

Crystal data

```
C}\mp@subsup{\textrm{C}}{12}{}\mp@subsup{\textrm{H}}{9}{}\mp@subsup{\textrm{NO}}{5}{}\textrm{S
Mr}=279.2
Orthorhombic, Pna2 
a=17.458 (4) \AA
b=12.287 (3) \AA
c=5.4891(14) \AA
V=1177.4 (5) \AA `
Z=4
Dx}=1.575\mp@subsup{\textrm{Mg m}}{}{-3
```

Mo $K \alpha$ radiation
Cell parameters from 713

reflections

$\theta=2.9-25.7^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.16 \times 0.14 \times 0.09 \mathrm{~mm}$

Data collection

Bruker Proteum M diffractometer	$R_{\text {int }}=0.059$
ω scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: none	$h=-22 \rightarrow 22$
7868 measured reflections	$k=-15 \rightarrow 12$
2392 independent reflections	$l=-7 \rightarrow 5$

1838 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043\)
\(w R\left(F^{2}\right)=0.060\)
\(S=0.91\)
2392 reflections
199 parameters
Only coordinates of H atoms
    refined
```

$$
\begin{aligned}
& R_{\text {int }}=0.059 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-22 \rightarrow 22 \\
& k=-15 \rightarrow 12 \\
& l=-7 \rightarrow 5
\end{aligned}
$$

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0153 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.47$ e \AA^{-3}
Absolute structure: (Flack, 1983), 897 Friedel pairs
Flack parameter $=-0.01(8)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C1-N1	$1.480(4)$	$\mathrm{N} 1-\mathrm{O} 1$	$1.230(3)$
C5-S1	$1.763(3)$	$\mathrm{O} 3-\mathrm{S} 1$	$1.4175(18)$
$\mathrm{C} 7-\mathrm{O} 5$	$1.427(3)$	$\mathrm{O} 4-\mathrm{S} 1$	$1.418(2)$
$\mathrm{N} 1-\mathrm{O} 2$	$1.226(3)$	$\mathrm{O} 5-\mathrm{S} 1$	$1.600(2)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	$124.3(3)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 5$	$103.67(10)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	$118.1(2)$	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 5$	$108.94(11)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$117.6(2)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 5$	$110.74(13)$
$\mathrm{C} 7-\mathrm{O} 5-\mathrm{S} 1$	$117.36(16)$	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{C} 5$	$107.98(13)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4$	$120.78(11)$	$\mathrm{O} 5-\mathrm{S} 1-\mathrm{C} 5$	$103.28(11)$
$\mathrm{C} 7-\mathrm{O} 5-\mathrm{S} 1-\mathrm{C} 5$	$-60.2(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 2$ is the centroid of the C7-C12 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C2-H2 . ${ }^{\text {O }} 1$	0.89 (2)	2.42 (3)	2.707 (4)	98.8 (18)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}$	0.90 (2)	2.57 (2)	2.932 (3)	104.5 (17)
C6-H6 \cdots - 2	0.94 (2)	2.39 (2)	2.715 (4)	100.2 (15)
C6-H6 \cdots O3	0.94 (2)	2.69 (2)	2.968 (3)	97.7 (16)
C12-H12 . ${ }^{\text {O } 4}$	0.90 (3)	2.80 (2)	3.095 (3)	100.4 (18)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {i }}$	1.00 (2)	2.80 (3)	3.426 (4)	121.2 (17)
$\mathrm{C} 3-\mathrm{H} 3 \cdots{ }^{\text {a }}{ }^{\text {i }}$	1.00 (2)	2.67 (3)	3.647 (3)	165 (2)
$\mathrm{C} 9-\mathrm{H} 9 \ldots \mathrm{O} 2^{\text {i }}$	0.93 (3)	2.87 (2)	3.399 (4)	117 (2)
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {i }}$	0.94 (2)	2.58 (2)	3.260 (3)	129.6 (19)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {i }}$	0.90 (2)	2.75 (2)	3.364 (4)	127.0 (18)
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{3 i}$	0.93 (3)	2.78 (3)	3.366 (4)	121.7 (19)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {ii }}$	1.00 (2)	2.65 (2)	3.170 (3)	112.2 (19)
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {iii }}$	0.94 (2)	2.84 (2)	3.317 (3)	112.9 (15)
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\text {iv }}$	0.94 (2)	2.48 (3)	3.219 (4)	135 (2)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 2$	0.90 (2)	3.38	3.72	105
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 2^{\mathrm{v}}$	0.90 (3)	3.13	3.71	124

