Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nagarajan Vembu,^a Maruthai Nallu,^a* Elinor C. Spencer^b and Judith A. K. Howard^b

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and ^bDepartment of Chemistry, Durham University, Durham DH1 3LE, England

Correspondence e-mail: mnalv2003@yahoo.com

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.043 wR factor = 0.060 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Phenyl 3-nitrobenzenesulfonate

In the title molecule, $C_{12}H_9NO_5S$, there are weak $C-H\cdots O$ interactions which generate rings of motifs S(5), S(6), $R_1^2(4)$, $R_2^1(5)$, $R_2^2(7)$ and $R_2^2(13)$. The supramolecular aggregation is completed by the presence of $C-H\cdots \pi$ interactions.

Received 14 July 2003 Accepted 21 July 2003 Online 31 July 2003

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi *et al.*, 1989) and in many other fields. An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitrobenzenesulfonyl chloride (Vembu, Nallu, Spencer & Howard, 2003*c*).

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters in Table 1. The dihedral angle between the mean planes of the 3-nitrobenzene and phenyl rings is $38.76~(8)^{\circ}$. This non-coplanar orientation is similar to that found in some other aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b), and is in contrast to the near coplanar orientation found in the 2,4-dinitrophenyl (Vembu, Nallu, Garrison & Youngs, 2003a) and 4-methoxyphenyl (Vembu, Nallu, Sallu, Garrison, Hindi & Youngs, 2003) derivatives.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

n of Crystallography The molecular structure of (I), showing 50% probability displacement ellipsoids.

Figure 2

Diagram showing hydrogen bonds 1-5 (the numbers relate to the sequence of entries in Table 2).

Diagram showing hydrogen bonds 6-14 (the numbers relate to the sequence of entries in Table 2). Symmetry codes are as in Table 2.

The crystal structure of (I) is stabilized by weak $C-H \cdots O$ interactions (Table 2). The range of $H \cdot \cdot \cdot O$ distances found in (I) agrees with that found for weak $C-H \cdots O$ bonds (Desiraju & Steiner, 1999). As shown in Fig. 2, each of the C2-H2 \cdots O1, C4-H4 \cdots O4, C6-H6 \cdots O2 and C6-H6···O3 interactions generates rings of graph-set motif S(5)(Etter, 1990; Bernstein et al., 1995). The C6-H6...O2 and C6-H6...O3 interactions together constitute a pair of bifurcated donor bonds. The $C12-H12\cdots O4$ interaction generates an S(6) motif. The C12-H12···O4 and C4-H4...O4 interactions together constitute a pair of bifurcated

acceptor bonds. The $C3-H3\cdots O3^{i}$ and $C3-H3\cdots O5^{i}$ interactions constitute a pair of bifurcated donor bonds, generating a symmetrical three-centre hydrogen-bonded chelate motif (Fig. 3) of graph-set $R_1^2(4)$ (symmetry codes are as in Table 2). The C4-H4 $\cdot \cdot \cdot$ O3ⁱ and C3-H3 $\cdot \cdot \cdot$ O3ⁱ interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graphset $R_2^1(5)$. The C3-H3···O5ⁱ and C4-H4···O3ⁱ interactions together generate an $R_2^2(7)$ motif, which consists of $R_1^2(4)$ and $R_2^{1}(5)$ motifs. The C9-H9···O3ⁱⁱ and C3-H3···O4ⁱⁱ interactions together form a sulfonyl bifurcated motif of graph-set $R_2^2(13)$. There are several other C-H···O interactions which contribute to the supramolecular aggregation of this structure. The supramolecular aggregation is completed by the presence of two C-H··· π interactions (Fig. 4 and Table 2; Spek, 1998).

Experimental

3-Nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (4 ml) was added to phenol (5 mmol) in NaOH solution (2.5 ml, 8%) with constant shaking. The precipitated title compound, (I) (3.9 mmol, yield 78%), was filtered off and recrystallized from ethanol.

Crystal data

C ₁₂ H ₉ NO ₅ S	Mo $K\alpha$ radiation
$M_r = 279.26$	Cell parameters from 713
Orthorhombic, Pna21	reflections
a = 17.458 (4) Å	$\theta = 2.9-25.7^{\circ}$
b = 12.287 (3) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 5.4891 (14) Å	T = 120 (2) K
V = 1177.4 (5) Å ³	Block, colourless
Z = 4	$0.16 \times 0.14 \times 0.09 \text{ mm}$
$D_x = 1.575 \text{ Mg m}^{-3}$	

Data collection

Bruker Proteum M diffractometer	$R_{\rm int} = 0.059$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: none	$h = -22 \rightarrow 22$
7868 measured reflections	$k = -15 \rightarrow 12$
2392 independent reflections	$l = -7 \rightarrow 5$
1838 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0153P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.043$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.060$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.91	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
2392 reflections	$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ \AA}^{-3}$
199 parameters	Absolute structure: (Flack, 1983),
Only coordinates of H atoms	897 Friedel pairs
refined	Flack parameter $= -0.01$ (8)

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.480 (4)	N1-01	1.230 (3)
C5-S1	1.763 (3)	O3-S1	1.4175 (18)
C7-O5	1.427 (3)	O4-S1	1.418 (2)
N1-O2	1.226 (3)	O5-S1	1.600 (2)
00 NH 01	1212(2)	00.01.05	102 (7 (10)
02-N1-01	124.3 (3)	03-81-05	103.67 (10)
O2-N1-C1	118.1 (2)	O4-S1-O5	108.94 (11)
O1-N1-C1	117.6 (2)	O3-S1-C5	110.74 (13)
C7-O5-S1	117.36 (16)	O4-S1-C5	107.98 (13)
O3-S1-O4	120.78 (11)	O5-S1-C5	103.28 (11)
C7-O5-S1-C5	-60.2(2)		

Table 2

Hydrogen-bonding geometry (Å, °).

Cg2 is the centroid of the C7-C12 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C2-H2···O1	0.89 (2)	2.42 (3)	2.707 (4)	98.8 (18)
C4-H4···O4	0.90 (2)	2.57 (2)	2.932 (3)	104.5 (17)
C6-H6···O2	0.94(2)	2.39 (2)	2.715 (4)	100.2 (15)
C6-H6···O3	0.94 (2)	2.69 (2)	2.968 (3)	97.7 (16)
C12-H12···O4	0.90 (3)	2.80(2)	3.095 (3)	100.4 (18)
$C3-H3\cdots O3^{i}$	1.00(2)	2.80 (3)	3.426 (4)	121.2 (17)
$C3-H3\cdots O5^{i}$	1.00(2)	2.67 (3)	3.647 (3)	165 (2)
$C9-H9\cdots O2^{i}$	0.93 (3)	2.87 (2)	3.399 (4)	117 (2)
$C10-H10\cdots O2^{i}$	0.94(2)	2.58 (2)	3.260 (3)	129.6 (19)
$C4-H4\cdots O3^{i}$	0.90(2)	2.75 (2)	3.364 (4)	127.0 (18)
C9−H9···O3 ⁱⁱ	0.93 (3)	2.78 (3)	3.366 (4)	121.7 (19)
C3-H3···O4 ⁱⁱ	1.00(2)	2.65 (2)	3.170 (3)	112.2 (19)
C6-H6···O4 ⁱⁱⁱ	0.94 (2)	2.84 (2)	3.317 (3)	112.9 (15)
C10−H10···O1 ^{iv}	0.94(2)	2.48 (3)	3.219 (4)	135 (2)
$C4-H4\cdots Cg2$	0.90(2)	3.38	3.72	105
$C12 - H12 \cdots Cg2^{v}$	0.90 (3)	3.13	3.71	124

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} + y, z - \frac{1}{2}$; (ii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$; (iii) x, y, 1 + z; (iv) $\frac{1}{2} + x, \frac{1}{2} - y, z - 1$; (v) $1 - x, -y, z - \frac{1}{2}$.

All the H atoms were located from difference Fourier maps and their positional parameters were refined with $U_{iso} = 1.2U_{eq}$ (parent atom). The C-H bond lengths are in the range 0.89 (3)-1.00 (2) Å.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

NV thanks the University Grants Commission-SERO, Government of India, for the award of Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99]. JAKH thanks the EPRSC for a Senior Research Fellowship. ECS thanks the EPRSC for support.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1998). SHELXTL. University of Göttingen, Germany.
- Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.
- Vembu, N., Nallu, M., Garrison, J., Hindi, K. & Youngs, W. J. (2003). Acta Cryst. E59, 0830-0832
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, 0378-0380.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b). Acta Cryst. E59, 0503-0505.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c). Acta Cryst. E59, 0776-0779
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d). Acta Cryst. E59, 0936-0938.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e). Acta Cryst. E59, 01019-01021.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a). Acta Cryst. E59, o1009-o1011.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b). Acta Cryst. E59, o1033-o1035.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c). Acta Cryst. E59, o1036-o1038.
- Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1-7.